
Chromosomal replicases achieve high processivity during 
DNA synthesis through their direct interaction with a ring-
shaped clamp that slides on DNA1,2. The sliding-clamp 
protein is loaded onto DNA by a multiprotein clamp-
loader complex that opens and reseals the clamp at the 
primer–template junction in an ATP-dependent manner1. 
The clamp loader interacts with the surface of the sliding 
clamp that binds to the DNA polymerase, and it must 
therefore leave the clamp prior to the use of the clamp by 
the DNA polymerase (BOX 1). In addition to their role in 
DNA replication, sliding clamps function with various pro-
teins that are involved in several other cellular processes, 
including cell-cycle control, DNA repair and apoptotic 
pathways3.

Functional and structural analyses indicate that the 
architecture and mechanism of clamps and clamp loaders 
are conserved across the three domains of life1,4–8. Despite 
their low level of sequence identity, all sliding clamps, from 
prokaryotes and eukaryotes alike, form similar planar ring 
structures with a central channel that is of sufficient width 
to encircle duplex DNA9–13 (FIG. 1). Even though the indi-
vidual clamps exist in different oligomeric states, each has 
a pseudo six-fold symmetry with six domains forming the 
complete ring. Likewise, the multiprotein clamp loaders 
from different organisms are circular heteropentameric 
complexes with sequence similarities among their sub-
units4–6,14. Biochemical studies indicate that clamp loading 
is a highly regulated process that involves communication 
between the different ATPase sites in the clamp-loader 
complex. Although different clamp loaders share several 
mechanistic features, there are also significant differences 
in the way that ATP is used by the various clamp-loading 
machines. This review provides a summary of our current 
state of knowledge about the clamp-loading mechanism 
in the three domains of life.

Prokaryotic clamps and clamp loaders
Escherichia coli β- and γγ-complex. The Escherichia coli 
chromosomal replicase is a multiprotein assembly that 
is known as DNA polymerase III (Pol III) holoenzyme15. 
Pol III holoenzyme contains ten different subunits that 
are organized into three different subcomponents: the 
Pol III core (comprising three subunits: the α-subunit, 
the ε-subunit and the θ-subunit), the β-clamp and the 
γ clamp-loader complex (γ τ2δδ′χψ)1. The crystal struc-
ture of the β-clamp reveals two identical crescent-shaped 
protomers that form a ring with a central channel of 
35-Å diameter, which is sufficiently wide to accom-
modate double-stranded DNA (dsDNA)9 (FIG. 1a). Each 
β-clamp protomer consists of three domains and dimer-
izes head-to-tail to generate two structurally distinct 
‘faces’. One face has several loops, and the C termini pro-
trude from it. In all known clamps, this ‘C-terminal face’ 
is the face of the ring that interacts with other proteins, 
as discussed below.

The γ clamp-loader complex consists of seven sub-
units (γ τ2δδ′χψ)16, but the ATPase activity resides only 
in the γ- and τ-subunits, which are both encoded by the 
same gene, dnaX. The γ-subunit (47 kDa) is truncated 
by a translational frameshift and is therefore smaller 
than the full-length τ-subunit (71 kDa)17–19. The unique 
24-kDa C-terminal extension of the τ-subunit (which is 
not present in the γ-subunit) binds to DNA B helicase 
and Pol III core at the replication fork20–23. Mixed clamp-
loader complexes that contain both γ- and τ-proteins16, 
as well as clamp loaders that contain three γ-subunits and 
no τ-subunits or three τ-subunits and no γ-subunits24,25, 
have been characterized. The γ3δδ′χψ complex24 prob-
ably fulfils functions other than replication, such as 
loading β-clamps onto DNA that is used by repair 
proteins1.
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at work in the three domains of life
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Abstract | Sliding clamps are ring-shaped proteins that tether DNA polymerases to DNA, 
which enables the rapid and processive synthesis of both leading and lagging strands at the 
replication fork. The clamp-loading machinery must repeatedly load sliding-clamp factors 
onto primed sites at the replication fork. Recent structural and biochemical analyses provide 
unique insights into how these clamp-loading ATPase machines function to load clamps onto 
the DNA. Moreover, these studies highlight the evolutionary conservation of the clamp-
loading process in the three domains of life.
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The γ3δδ′ complex, which lacks χ- and ψ-subunits, 
is referred to as the ‘minimal’ clamp loader, as the γ-, 
δ- and δ′-subunits are necessary and sufficient to place 
the β-clamp on a primed DNA template24. The γ-, δ- and 
δ′-subunits are members of the AAA+ family of ATPases 
(BOX 2). The χ- and ψ-subunits are not required for 
clamp loading24 and the structure of the χψ complex 
shows no structural similarities to the other clamp-
loader subunits26. However, the χψ subassembly binds 
to single-stranded-DNA-binding protein (SSB) and 
destabilizes the primase–SSB contact, which leads to the 
dissociation of primase and the assembly of the clamp 
onto new RNA-primed sites27,28.

The crystal structure of the γ3δδ′ complex reveals 
that the five subunits are arranged in a circular fashion6 

(FIG. 2a). Each subunit consists of three domains (FIG. 2b). 
The C-terminal domains of the five subunits pack with 
one another to form a tight uninterrupted circular ‘col-
lar’ that holds the pentamer together (FIG. 2a, left). The 
two N-terminal domains in each subunit are comprised 
of the AAA+ homology region. These AAA+ homology 
domains are arranged in a right-handed helix, as 
described in more detail below5,29. The asymmetric 
circle that is formed by the γ3δδ′ pentamer contains 
a gap between the AAA+ domains of the δ- and 
δ′-subunits (FIG. 2a, middle and right). This gap, the 
heteropentamer composition and the helical arrange-
ment of AAA+ domains distinguish clamp-loader 
complexes from most of the other AAA+ ATPases, 
which are often circular homohexamers with no 
gaps30,31 (BOX 2). Perhaps during the evolution of the 
clamp loaders, a ‘sixth’ subunit was displaced to create 
the gap. This gap is needed for DNA-strand passage, as 
illustrated in FIG. 2b.

Mechanistic insights into E. coli clamp loading. The 
clamp-loading mechanism can be described on the basis 
of biochemical studies. The δ-subunit of the clamp loader 
is capable of binding and opening the β-clamp dimer on 
its own, but it is blocked from binding the β-clamp by 
the other subunits of the clamp-loader complex7,32. The 
clamp-loader complex does not bind the β-clamp until 
the ATP-binding sites are occupied. ATP binding drives 
a conformational change that allows the clamp loader 
to bind and open the clamp33. Although the δ-subunit 
forms a strong attachment to the β-clamp and drives 
clamp opening, other subunits of the complex are also 
known to bind the clamp1. The clamp-loader–β-clamp 
complex then binds primed DNA, which stimulates 
hydrolysis of ATP34. This, in turn, results in the clos-
ing of the clamp around the DNA and the ejection of 
the clamp loader from the β-clamp and the DNA34–36. 
The clamp has two distinct faces (FIG. 1a) and must be 
positioned on the primed site such that the correct 
face is properly oriented to functionally interact with 
the DNA polymerase9,32. So, the γ-complex must use the 
3′ terminus as a guidepost to locate and orient the clamp 
at a primed site.

Insight into how the δ-subunit opens the β-clamp is 
provided by the structure of the δ-subunit bound to a 
monomeric mutant of the β-clamp7. This structure shows 
two distinct points of contact between the δ-subunit 
and the β-clamp, which are located on opposite ends 
of the same α4 helix in the N-terminal domain of the 
δ-subunit (FIG. 2c). One end of the α4 helix of the δ-subunit 
partially unfolds and binds a hydrophobic pocket on 
the surface of the β-clamp. The opposite end of the α4 
helix seems to exert a force on the dimeric interface. The 
result is a distortion at one interface of the clamp, which 

Box 1 | Clamp loading and the use of sliding clamps in processive DNA synthesis

The figure represents a generalized mechanism of clamp-loader and clamp–DNA-polymerase action. A multiprotein 
clamp loader, in the presence of ATP, binds and opens a ring-shaped sliding clamp. In the ATP-bound state, the clamp 
loader has a high affinity for primer–template junctions with recessed 3′ ends. Binding of DNA stimulates ATP hydrolysis 
and clamp-loader ejection from DNA, leaving the closed clamp on DNA, properly oriented for use by a replicative DNA 
polymerase. The clamp loader and DNA polymerase compete for the same C-terminal face of the clamp. Therefore, it is 
important that the clamp loader leaves the clamp, freeing the clamp for use with other enzymes such as replicative DNA 
polymerases. Different proteins that are involved in cell-cycle control, DNA replication, DNA repair and the apoptotic 
pathway bind the clamp. In particular circumstances, two or more proteins can bind to a clamp on DNA at the same time. 
For example, Escherichia coli DNA polymerase III and IV simultaneously bind to the β-clamp for lesion bypass120,121. 
In another example, Sulfolobus solfataricus DNA polymerase, flap endonuclease-1 (FEN1) and DNA ligase I bind to 
proliferating cell nuclear antigen (PCNA) and couple DNA synthesis and Okazaki-fragment maturation107. 
Pi, inorganic phosphate.
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is inconsistent with clamp closure and is presumed to 
hold the β-clamp in an open conformation7,37.

The clamp must open at least 20 Å to accommodate 
passage of duplex DNA into the central channel. Comp-
arison of the β-dimer with the β-monomer (from the 
δ–β structure) shows that the dimeric β-ring is under 
spring tension in the closed state. Interaction with the 
δ-subunit disrupts one interface and allows the spring 
tension between the β-domains to relax, producing a 
gap for DNA-strand passage7. The strong interactions 
between β-monomers probably maintain this tension 
until the δ-subunit distorts one of them.

The crystal structure of the minimal E. coli clamp 
loader (γ3δδ′) has also been determined in the pres-
ence of the poorly hydrolysable ATP analogue ATPγS38. 
Three of the five subunits of the minimal clamp loader 
are functional ATPases (γ), whereas the other two 
subunits (δ and δ′) do not bind ATP39. The ATP sites 
of the γ clamp-loader complex are located at the inter-
faces between subunits (BOX 2). Most of the contacts to 
each bound nucleotide are formed within one subunit, 
although the catalytic site requires a conserved arginine 
residue from a neighbouring subunit. This arginine resi-
due, which is known as an ‘arginine finger’, is located in 
a conserved serine–arginine–cysteine (SRC) motif that 
is present in all known clamp loaders. The structure of 
the nucleotide-free γ3δδ′ complex shows that two of the 
ATP-binding sites are open (site-1 and site-3), whereas 
one is sealed shut (site-2) by the close juxtaposition of 

the adjacent subunit6. Interestingly, only two nucleotides 
are bound in the structure of the γ3δδ′ complex in the 
presence of ATPγS (in site-1 and site-3), whereas site-2 
remains empty, and the structure has changed little com-
pared with unliganded γ3δδ′ (REF. 38). This indicates that 
the binding of a third ATP molecule at site-2 is required 
to promote a structural rearrangement that results in 
an interaction between the clamp and the clamp loader. 
Studies of γ-complexes with mutated ATP sites indi-
cate that arginine fingers at different ATP sites serve 
important and distinct functions. ATP still binds to a 
γ-complex that lacks arginine fingers, but the resulting 
ATP–γ-complex binds neither the β-clamp nor DNA. 
The arginine finger in site-1 is needed to attain a con-
formation of the clamp loader that binds to the β-clamp, 
and the arginine fingers of site-2 and site-3 are needed 
to enable binding to DNA40–42. The three ATP mole-
cules then undergo ordered hydrolysis, resulting in the 
closure of the β-clamp around DNA and the ejection of the 
γ-complex from the β-clamp and DNA.

At the replication fork, the asymmetric structure of the 
E. coli clamp loader imposes distinct properties onto 
the two identical Pol III cores, which make them comp-
etent for replicating the leading or lagging stand43,44. The 
two τ-subunits of the clamp loader crosslink two Pol III 
cores that replicate both strands22. The single clamp 
loader within the Pol III holoenzyme assembles β-clamps 
onto DNA for both leading and lagging stands23. During 
fork progression, the lagging-strand polymerase hops 

Figure 1 | Sliding clamps of different organisms. Crystal structure of (a) the Escherichia coli β-complex (Protein Data 
Bank (PDB) code 2POL), (b) gp45 of bacteriophage T4 (PDB code 1CZD), (c) Saccharomyces cerevisiae proliferating cell 
nuclear antigen (PCNA; PDB code 1PLQ) and (d) Pyrococcus furiosus PCNA (PDB code 1GE8). Sliding clamps have similar 
architectures, comprising six domains arranged in a circle. The E. coli β-complex is a dimer (three domains per monomer), 
whereas T4 gp45 and PCNA are trimers (two domains per monomer). The rings have a continuous layer of antiparallel 
sheets all around them, and 12 α-helices line the central cavity (except in T4 gp45). The chain-folding topologies of each 
domain are essentially the same, although one β-sheet and α-helix are disrupted in each protomer of the T4 clamp, 
which probably contributes to its lower stability. The protomers are arranged head-to-tail in all clamps, which results in 
structurally distinctive ‘faces’. The face from which the C-terminal domains protrude is the interactive surface for other 
proteins (for example, clamp loaders, DNA polymerases and repair proteins).
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from one β-clamp to another upon the completion of 
each Okazaki fragment, leaving the clamps behind on the 
DNA23. The γ-complex, which can load and unload clamps 
from DNA, assists in the dissociation of the β-clamp 
during ongoing fork movement32. The presence of the 
τ-subunit protects the β-clamp in the leading strand 
from being removed by the γ-complex and stimulates 
processive DNA synthesis45. The τ-subunit also contrib-
utes to processivity on the leading strand by interacting 
directly with DnaB helicase and stimulating its catalytic 
efficiency for the unwinding of dsDNA22,23.

Bacteriophage T4 gp45 and gp44/62. The replicase of 
bacteriophage T4 and its close relative RB69 each consist 
of the gp43 DNA polymerase, the gp45 sliding clamp 
and the gp44/62 clamp loader (reviewed in REFS 46–48). 
The T4 gp45 sliding clamp is a homotrimeric ring with 
inner and outer diameters that are similar to those of the 
β-clamp10,49,50. The gp45 monomer consists of only two 
domains, but the trimer forms a six-domain ring like the 

β-clamp. The crystal structure shows that all three inter-
faces of the gp45 monomers are fully closed10 (FIG. 1b and 
FIG. 3a, left). However, solution FRET studies indicate that 
the gp45 clamp exists in an open state51 (FIG. 3a, right).

The gp44/62 clamp loader contains four gp44 
subunits and one gp62 subunit50. The gp44 subunit is 
homologous to the E. coli γ- and δ′-subunits. However, 
the gp62 subunit is similar to the δ-subunit of the clamp 
loader as it lacks both the SRC motif and the Walker 
A motif (also known as a P-loop) and its sequence has 
diverged from gp44. Although the arrangements of 
the gp44 and gp62 subunits are not known, they are 
presumed to form a circle that is similar to the E. coli 
γ-complex (FIG. 3b). The gp44/62 clamp loader has a very 
low intrinsic ATPase activity, but the presence of both 
the clamp and primed DNA stimulates its activity52,53. 
The gp44 subunits contain an ATP-binding site each 
and also seem to be responsible for the main contacts 
with DNA52,54. However, the gp62 subunit is required to 
achieve stimulation of the ATPase activity of the gp44/62 

Box 2 | Clamp-loader subunits are AAA+ proteins

The AAA+ family includes chaperone-like proteins with a conserved ATP-binding module that is defined by two domains 
(for example, domains I and II in the γ-subunit of the Escherichia coli clamp loader; see figure, part a)122–125. On the basis of 
sequence alignments and structural information, seven major classes of AAA+ proteins have been defined. Most of them 
form closed hexameric assemblies, except class-1 and class-2, which are characterized by open-ring complexes (FIG. 2a 
and FIG. 4a). Clamp loaders belong to class-1. In the γ-subunit of the E. coli clamp loader, the sequences that define the 
AAA+ family encompass the two N-terminal domains (part a). The N-terminal domain I comprises sequences from 
boxes II–VI, whereas the sequences within the remaining four boxes (boxes VII, VII′, VII′′ and VIII) are contained within 
domain II (see figure, part b).

In AAA+ proteins, the nucleotide-binding pocket, which is common in other nucleoside 5′-triphosphatases (NTPases), lies 
at the apex of three adjacent, parallel β-strands in a compact αβα fold referred to as the AAA+ core, or the RecA-like 
arrangement. The AAA+ core contains the Walker A (also known as the P-loop) and Walker B ATP-binding motifs. 
Distinguishing features of AAA+ proteins are box VII and two other nucleotide-interacting motifs, termed sensor-1 and 
sensor-2 (REF. 126). The box VII motif contains a highly conserved arginine residue that is thought to function as the 
‘arginine finger’ in GTPase-activating proteins127.

In AAA+ oligomers, ATP-binding and ATP-hydrolysis events occur at the interface of neighbouring subunits and drive 
conformational changes within the AAA+ assembly that direct translocation or remodelling of the target substrates. The 
major component of the ATP-binding site is located on one subunit, although other residues that are essential for catalysis 
are located on the adjacent subunit. Most commonly, this takes the form of an arginine finger. In clamp loaders, the arginine 
finger is located in a conserved SRC motif in box VII. A bipartite ATP site is shown (see figure, part c) in which the δ-subunit 
of E. coli clamp loader (purple) contributes the arginine finger to ATP bound to the γ-subunit (green). The location of this 
interfacial ATP site within the clamp-loader pentamer (γ3δδ′) is indicated on the right. RFC, replication factor C.
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complex by the gp45 clamp54. The four gp44 subunits 
bind four ATP molecules, which are then hydrolysed 
during the assembly of the holoenzyme on DNA53,55.  
Given the fact that the gp62 subunit lacks a SRC motif, 
it seems likely that the gp44 subunit that is adjacent to 
gp62 will not be able to hydrolyse ATP, and therefore the 
gp44/62 clamp loader might only have three competent 
ATP-hydrolysis sites. In this case, one of the three ATP 
sites might reload and hydrolyse a second ATP molecule 
in order to achieve the hydrolysis of four ATPs during 
the clamp-loading process.

Several studies employing a diversity of fluorescent 
techniques have been used to examine clamp loading 
and the assembly of the T4 gp43 DNA polymerase 
with the clamp on DNA56–61. These investigations, as 
well as photocrosslinking experiments62, show that the 
binding of gp44/62–4ATP to gp45 is accompanied by 
the hydrolysis of two molecules of ATP, which seems 

to open the clamp to accommodate duplex DNA60,61 

(FIG. 3b). Comparison of the gp44/62–gp45 complex in 
the presence and absence of nucleotides indicates that 
ATP binding induces a conformational rearrangement 
of the subunits57,62. Opening of the clamp is not observed 
when a non-hydrolysable ATP analogue, such as ADP, 
ATPγS or ADP–Al3F, is used in place of ATP, which 
indicates that it is the hydrolysis, and not the binding of 
ATP, that leads to clamp opening51,63. Interestingly, gp62 
is involved in binding DNA64,65. Upon the association of 
the gp44/62–gp45 binary complex with DNA, further 
ATP hydrolysis occurs and the open gp45 clamp converts 
to an out-of-plane left-handed helical conformation56,66 

(FIG. 3b). Clamp opening and closing events are intimately 
tied to ATP hydrolysis, but only partially triggered by it66. 
So, it seems that nucleotide hydrolysis mainly powers 
conformational changes in gp44/62 that prepare it for 
interaction, first with gp45 and then with DNA.

Figure 2 | The Escherichia coli γ clamp-loader complex. a | Crystal structure of the Escherichia coli γ3δδ′ complex 
(Protein Data Bank (PDB) code 1JR3). Left-hand diagram: view looking down on the C-terminal domains that form an 
uninterrupted circular collar. Middle diagram: side view of γ3δδ′. The gap between the N-terminal domains of the δ- and 
the δ′-subunits is facing the viewer. The β-interactive helix in domain I of the δ-subunit is shown in yellow. The β-clamp 
docks onto domain I of the different subunits (not shown). Right-hand diagram: view looking at the N-terminal face of 
γ3δδ′. The gap between the AAA+ domains of the δ- and the δ′-subunits is apparent. Adapted with permission from 
REF. 6 © Elsevier. b | Cartoon of  γ3δδ′ binding to DNA and the β-clamp. Each subunit is composed of three domains. 
The N-terminal domain I binds to the β-clamp, thereby opening it. Primed template fits through the gap between the 
δ- and δ′-subunits and the open clamp. c | The structure of δ-subunit domain I bound to a β-clamp monomer (PDB code 
1JQL). Helix α4 of the δ-subunit contacts the β-clamp in two places: a hydrophobic pocket and a loop at the interface. 
The N-terminal domain of the δ-subunit is shown in green. The structure of the β-clamp monomer (β1) is in yellow for the 
dimeric form of the clamp, and in red for the β-clamp monomer in the δ–β complex. The grey surface represents a second 
β-clamp monomer modelled into the δ–β structure. Adapted with permission from REF. 7 © Elsevier.
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Once clamp loading is complete, the clamp loader is 
ejected and T4 gp43 DNA polymerase associates with 
gp45 and closes it to an in-plane conformation in an ATP-
independent process48,59,60,67. The T4 DNA polymerase 
is reported to interact with the clamp by inserting its 
C terminus into one of the gp45 interfaces60, as shown in 
FIG. 3b. As in the E. coli system, both the gp44/62 clamp 
loader and the gp43 polymerase bind to the C-terminal 
face of gp45, and the clamp loader must therefore detach 
from the clamp to make room for the polymerase–clamp 
interaction68,69.

The finding that the gp45 clamp spontaneously opens 
in solution raises the question of why a clamp loader is 
needed in this system51. Indeed, the gp45 clamp has been 
shown to self-load onto DNA, provided that a macro-
molecular crowding agent is present70. Presumably, the 
clamp loader orients the clamp on DNA for interaction 
with the polymerase.

Eukaryotic PCNA and RFC
The eukaryotic replication factor C (RFC) clamp loader 
assembles the proliferating cell nuclear antigen (PCNA) 
clamp onto primed DNA for function with the replicative 
DNA polymerase-δ and -ε2,71,72. Eukaryotic PCNA and the 
E. coli β-clamp form very similar ring-shaped structures, 
except that each PCNA monomer consists of two domains 
and trimerizes to form a six-domain ring12 (FIG. 1c). 

Each PCNA domain has the same chain-folding topology 
that is observed in the domains of the β-clamp. Like the 
β-clamp, the PCNA protomers are arranged head-to-tail 
to create two distinct ‘faces’ of the ring and, as found in 
E. coli, the eukaryotic clamp loader and polymerase com-
pete for binding to the same face of the PCNA ring73,74.

RFC structure and composition. RFC consists of five dif-
ferent proteins that are homologous to one another and 
to the subunits of the E. coli clamp loader14, and, there-
fore, each RFC subunit belongs to the AAA+ family. In 
Saccharomyces cerevisiae, the five subunits of the clamp 
loader are referred to as either subunits A–E or 1–5 (REF. 5). 
The alphabetical nomenclature was proposed on the 
basis of clamp-loader structures, in which subunits are 
labelled alphabetically by going around the circular 
pentamer (FIG. 4a). Four of the RFC subunits share a 
similar three-domain architecture that is characteristic 
of the E. coli γ-, δ- and δ′-subunits and are referred to 
as the small subunits of RFC (RFCB, RFCC, RFCD and 
RFCE or RFC4, RFC3, RFC2 and RFC5, respectively)5,75. 
The RFCA/RFC1 subunit is sometimes referred to as 
the large subunit, as it contains the three domains of the 
small subunits along with N- and C-terminal exten-
sions76. In both yeast and human RFC, deletion of the 
N-terminal region of the large subunit, up to the region 
of homology to the other RFC subunits, is tolerated with 
no loss of activity75,77,78. This N-terminal region binds 
DNA nonspecifically and its function is unknown.

Other RFC-like subunits have been identified that 
replace RFCA/RFC1. These subunits include Rad24 
(REFS 79,80), Ctf8 and Elg1 (REFS 81–83) in S. cerevisiae. 
The resulting alternative clamp loaders are thought to 
carry out specialized functions in the DNA-damage-
checkpoint response and at sites of sister-chromatid 
cohesion. In response to DNA damage, human RAD17–
RFC (Rad24–RFC in S. cerevisiae) loads a unique 
RAD9–RAD1–HUS1 (Ddc1–Rad17–Mec3 in S. cerevisiae) 
hetero trimeric clamp onto the 5′ end of a primed DNA, 
the function of which is still unclear84–87. In S. cerevisiae, 
both Rad24–RFC and Ctf8–RFC can unload PCNA 
clamps in vitro, but whether this activity is important for 
their function in vivo requires further study 88,89.

Eukaryotic RFC and the E. coli γ-complex clamp loaders 
share many structural and functional similarities, but also 
have several important differences. RFCA/RFC1 occupies 
an analogous position to the δ-clamp-opening subunit in 
the E. coli clamp loader and contains conserved clamp-
interacting residues75,90, yet it does not open the clamp like 
the E. coli δ-subunit89. The RFCE/RFC5–RFCD/RFC2 
complex opens the clamp without other subunits, which 
leads to the suggestion that RFC opens the PCNA clamp 
from the opposite side of the clamp interface compared 
with the E. coli γ-complex89. Both RFC and the E. coli 
γ-complex require only the binding of ATP or ATPγS to 
open their respective clamps and place them onto DNA; 
the clamp then remains open and the clamp loader stays 
bound to the clamp and DNA89,91–94. Similarly to the 
E. coli γ-complex, ATP hydrolysis is needed to eject RFC 
from the clamp and DNA95. Compared with the E. coli 
γ-complex, RFC contains one additional competent 

Figure 3 | The gp45 clamp and the gp44/62 clamp loader of bacteriophage T4. 
a | Ribbon and surface diagrams of gp45 (Protein Data Bank (PDB) code 1CZD). The 
crystal structure of gp45 (left) is a closed clamp. On the right is a model of the solution 
structure of gp45 in the open form. Adapted with permission from REF. 51 © American 
Chemical Society. b | The clamp-loading mechanism of bacteriophage T4. The gp44/62 
clamp loader (comprising four gp44 subunits (purple) and one gp62 subunit (green)) 
hydrolyses two molecules of ATP to bind and stabilize the open gp45 clamp. DNA binding 
to the gp44/62–gp45 complex results in further ATP hydrolysis, which is followed by the 
departure of the clamp loader and the association of the C-terminal tail of the gp43 DNA 
polymerase that is ‘jammed’ into the middle of one gp45-clamp interface.
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ATPase site that is located in RFCA/RFC1, and RFC there-
fore possesses four ATPase sites. However, the ATPase site 
of RFCA/RFC1 is not required for clamp-loading activity 
and its function remains unknown96.

The RFC–PCNA complex. A crystal structure of the 
S. cerevisiae RFC–PCNA complex has been solved in 
the presence of ATPγS5 (FIG. 4a). The AAA+ nucleotide-
binding domains of the five RFC subunits, which also 
contain the PCNA-clamp-interacting elements, are 
arranged in a spiral, whereas the PCNA ring is planar 
and closed. As a consequence of the RFC spiral binding 
the planar closed PCNA, only three RFC subunits contact 
PCNA (RFCA/RFC1, RFCB/RFC4 and RFCC/RFC3). 
Recent biochemical studies show that RFCD/RFC2 and 

RFCE/RFC5 subunits do in fact bind PCNA and are 
needed to open the clamp89. Therefore, it is likely that 
one or more of the mutations that were introduced for 
structure analysis might have prevented the formation 
of the open PCNA–RFC intermediate. Molecular simula-
tions of PCNA indicate that the PCNA clamp opens out-
of-plane to form a right-handed helix97. A right-handed 
PCNA helical ‘lock washer’ nicely docks onto RFC, and 
probably enables the open PCNA clamp to bind all five 
RFC subunits97 as shown in FIG. 4b. A recent FRET study 
of RFC and PCNA confirms and extends this view98. 
The findings indicate that during clamp loading, PCNA 
undergoes sequential in-plane opening, then out-of-plane 
partial closing onto DNA, followed by full closure of the 
ring98. An electron microscopy (EM) reconstruction of 

Figure 4 | The eukaryotic RFC–PCNA binary complex. a | Shown on the left is the crystal structure of the 
Saccharomyces cerevisiae RFC (replication factor C)–PCNA (proliferating cell nuclear antigen) complex that was solved in 
the presence of ATPγS (Protein Data Bank (PDB) code 1SXJ; ATPγS is not visible in the structure above). RFCD (also known 
as RFC2) and RFCE (also known as RFC5) do not contact the closed PCNA clamp. The diagrammatic representation of the 
RFC–PCNA crystal structure on the right shows the nomenclature for clamp-loader subunits, and PCNA is shown in brown. 
b | Model of RFC–PCNA, which indicates that PCNA might open into a right-handed spiral, thereby docking onto the spiral 
of AAA+ domains of all five RFC clamp-loader subunits. Adapted with permission from REF. 97 © National Academy of 
Sciences, USA. c | Model of the DNA that is positioned in the RFC–PCNA–ATPγS structure. The AAA+ domains of RFC 
subunits are arranged in a helix with a pitch that tracks the minor groove of B-form DNA. The C-terminal collar functions 
as a screw cap that blocks the continued threading of DNA through the structure. The diagram on the right illustrates how 
single-stranded DNA (ssDNA) at a primed site might bend sharply to exit out the side of RFC. d | Top view of the 
RFC–PCNA–DNA model. The C-terminal collar is removed. The AAA+ domains of the RFC subunits are colour coded as 
in panel a. PCNA is in grey and DNA is green and orange. The α-helices of RFC subunits that track DNA are highlighted in 
yellow. Each subunit contains two of these α-helices. Green spheres indicate a possible exit path for template ssDNA from 
the central chamber. Parts c and d are adapted with permission from REF. 5 © Macmillan Magazines Ltd.
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an archaeal RFC bound to PCNA and DNA also provides 
experimental support for this model4 (see below).

Insights into the way that clamp loaders bind to DNA 
were first obtained from the yeast RFC–PCNA crystal 
structure. The spiral shape of RFC has an overall pitch 
that closely matches DNA, and RFC forms a central 
chamber into which duplex DNA can fit (FIG. 4c). The 
helices and loops that line the central cavity of RFC 
are oriented to interact electrostatically with the DNA 
modelled inside (FIG. 4d). Several basic residues on these 
helices are conserved in prokaryotic and eukaryotic 
clamp loaders. Mutation of some of these residues in 
yeast RFC and in the E. coli γ- and δ′-subunits results in a 
significantly reduced affinity of the mutant clamp loaders 
for DNA, and supports the proposed location of DNA 
within the central chamber of the clamp loader89,99.

The crystal structure of RFC–PCNA also provides 
an explanation for the recognition of a primed template. 
The C-terminal domains of the five RFC subunits form a 
closed cap, and, therefore, DNA in the central chamber 
must bend out of the gap in the side of RFC. Duplex 
DNA is too stiff to bend and exit through the gap, 
whereas the flexible single-stranded DNA (ssDNA) of a 
primer–template junction might easily bend out through 
the gap (FIG. 4c). A nicked dsDNA also provides sufficient 
flexibility to support PCNA loading100.

Archaeal PCNA and RFC
Archaea, the third domain of life101, are proposed to 
possess a DNA-replication apparatus that is similar to that 
of eukaryotes102. Archaea contain a PCNA clamp and 
an RFC clamp loader that function with B-family DNA 
polymerases103,104. The two crystal structures of an 
archaeal clamp that have been solved so far are of PCNA 
in complex with a peptide that was derived from flap 
endonuclease-1 (FEN1) of Archaeoglobus furiosus105 
and of PCNA from Pyrococcus furiosus (PfuPCNA)13. 
PfuPCNA forms a homotrimeric ring that is similar to 
yeast PCNA (FIG. 1c,d). Although the overall structure is 
very similar to clamps from various organisms, PfuPCNA 
seems to contain more ion pairs at the interface and fewer 
intermolecular main-chain hydrogen bonds. The addi-
tional ion pairs of PfuPCNA might lead to the instability 
of the clamp trimer and could account for the self-loading 
that has been observed during in vitro DNA synthesis 
in the absence of the clamp loader106. In Archaea, some 
PCNAs also exist as heterotrimeric complexes107.

Archaeal RFC versus other clamp loaders. Archaeal 
genomes encode small (RFC-s) and large (RFC-l) RFC 
subunits108. The two subunits of archaeal RFC form a 
complex with a 1:4 (RFC-l:RFC-s) stoichiometry109–111 
with the apparent exception of the Methanobacterium 
thermoautotrophicum clamp loader, for which a hetero-
hexameric composition has been proposed112. Both 
RFC-s and RFC-l contain seven of the eight highly con-
served RFC motifs, which are referred to as box II–VIII 
in yeast and human RFC clamp-loader subunits14 (BOX 2). 
Archaeal RFC-s typically shares ~40% sequence identity 
with the eukaryotic RFC small subunits (yeast RFCB/
RFC4, RFCC/RFC3, RFCD/RFC2 and RFCE/RFC5). 

The RFC-l subunit is more divergent, with ~20% 
identity to yeast RFCA/RFC1, and it lacks the RFC 
box I motif106,108. RFC-l binds to the clamp in a similar 
manner to the E. coli δ-subunit. The crystal structure of 
PfuPCNA, complexed with a peptide that contains the 
PCNA-binding sequence of the RFC-l subunit113, shows 
a similar interaction mode to that observed in the com-
plex between the human inhibitor of cyclin-dependent 
protein kinase p21WAF1/CIP1 and PCNA, as well as to the 
RB69 phage gp45 clamp complexed with a peptide 
from RB69 DNA polymerase11,49.

The structures of RFC-s from P. furiosus and 
Archaeoglobus fulgidus have been solved114,115, although 
RFC-s alone is inactive as a clamp loader. The RFC-s 
subunits have similar chain folds to the eukaryotic and 
bacterial clamp-loader subunits. The crescent-shaped 
small subunit is organized into three domains: domains 
I and II comprise the canonical AAA+ fold and are 
responsible for interaction with nucleotides (ADP or 
ADPNP), whereas domain III forms a five-helix bundle 
and mediates subunit contacts. The RFC-s of A. fulgidus 
forms hexameric rings114, whereas P. furiosus RFC-s 
crystallizes as a dimer of trimers115. EM studies indicate 
that P. furiosus RFC-s can also form hexameric rings at 
physiological pH values116. In A. fulgidus RFC-s, ADP 
occupies all six sites, whereas in the P. furiosus RFC-s struc-
ture only four of the six subunits contain ADP. In both 
RFC-s structures, the conformation of the nucleotide-
binding domain is very similar to that observed in the 
structure of nucleotide-free E. coli γ-complexes.

Unlike the γ-complex, the A. fulgidus RFC-s complex 
undergoes substantial conformational changes that are 
associated with nucleotide binding38,115,117. Nucleotide 
binding leads to a more open and asymmetric complex, 
and this change might correspond to opening of the 
PCNA ring by RFC during the clamp-loading reaction. 
Biochemical analysis of A. fulgidus RFC indicates that 
it binds two molecules of ATP in the absence of other 
factors, and a maximum of four ATP molecules in 
the presence of the clamp118. Binding of a nucleotide to the 
large subunit and three of the small subunits is sufficient 
for clamp loading.

After loading the clamp onto DNA, ATP hydrolysis by 
RFC-s subunits releases PCNA. By contrast, ATP hydro-
lysis by the large subunit is required for catalytic recycling 
of RFC118. Mutation of the arginine finger in the small 
subunits results in a complex that cannot load PCNA115. 
This result is analogous to arginine-finger mutations 
in the E. coli clamp loader40. Possible insight into the 
defect comes from studies of the structure of RFC-s 
complexed with a non-hydrolysable analogue of ATP, 
ADPNP115. The structure shows that a helix in the 
N-terminal region is located close to the arginine finger 
and therefore might control access of this residue to the 
nucleotide site and thereby regulate ATP hydrolysis. 
Interestingly, this helix is in RFC box II and is con-
served in the other clamp-loader subunits14. Analysis of 
A. fulgidus RFC in which this helix in RFC-s is deleted 
indicates that the ATPase activity of RFC-s is coupled to 
clamp release, because the mutant RFC releases PCNA 
prematurely due to unrestrained ATP hydrolysis.
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Archaeal RFC–PCNA–DNA complex

180° 180°

Bacteriophage T4 and archaeal clamp loaders have 
similar subunit compositions: each contains two different 
subunits in a 1:4 stoichiometry. In archaea, the single-
copy subunit (RFC-l) has an ATPase motif, unlike 
T4 gp62. Also, the single-copy gp62 subunit in the T4 
clamp loader is smaller than the other subunits (gp44 is 
homologous to RFC-s). Despite these differences, these 
two clamp loaders bind only four ATPs53,55,118. How the 
archaeal RFC limits the access of ATP to one of its five 
sites is currently unknown.

Mechanism of clamp loading. Important insights into 
RFC-mediated PCNA-clamp opening have been derived 
from a recent EM reconstruction analysis of the P. furiosus 
RFC–PCNA–DNA ternary complex in the presence of 
ATPγS4,119 (FIG. 5). The structure shows PCNA in an open 
helical conformation. The right-handed spiral configura-
tion allows PCNA to dock extensively onto the helical 
surface of RFC. This result is consistent with molecular 
dynamics simulations of yeast PCNA, which indicate that 
PCNA assumes a right-handed spiral conformation when 
it opens97. The EM analysis shows duplex DNA bound 
within the centre of the RFC–PCNA complex4. The 5-Å 
gap in the out-of-plane, right-handed conformation of 
the ring is too small to allow the passage of duplex DNA. 
Therefore, either the ring opens further during clamp 
loading, or the single-stranded portion of a primed site 
is threaded through the gap during clamp loading.

Concluding remarks
Clamps and clamp loaders are at the centre of many 
DNA metabolic pathways such as replication, repair and 
recombination. In particular, the strategy of using clamps 
and clamp loaders as a way of achieving high processivity 
is well conserved across the evolutionary spectrum. 
Although there are important differences in clamps 
and clamp loaders between the three domains of life, 
the striking similarities are far more extensive than the 
differences. Presumably, the basic architecture and func-
tion of clamp–clamp-loader complexes was achieved very 
early on in evolution. An advantage of well conserved 
multiprotein machines is the complementarity observed 
by research from different laboratories that study clamp 
loaders from diverse organisms. Therefore, studies in 
E. coli and other prokaryotes, bacteriophage T4 and RB69, 
and various eukaryotes and archaea have led to a compre-
hensive view of how these important machines function, 
and also of how they differ. However, many aspects of the 
clamp-loading mechanism remain poorly characterized. 
For example, does the clamp loader pry open the interface 
of a clamp, or capture and stabilize a clamp that opens 
spontaneously? What are the various ATP-induced con-
formational changes in the clamp loader that enable it to 
bind the clamp and to accommodate DNA in the internal 
chamber? How does the clamp loader sense the 3′ or 5′ 
directionality of the primed site? How are clamps re cycled 
from DNA after their use in repair and other DNA 
metabolic pathways? These and many other questions 
remain for exciting future investigations.

Figure 5 | The archaeal RFC–PCNA–DNA ternary complex. Shown is the fitting of 
atomic models of small replication factor C (RFC-s) subunits and PCNA (proliferating cell 
nuclear antigen) subunits into the electron microscopy three-dimensional map of the 
clamp-loading complex. Stereo pair of front (upper) and back (lower) views of the RFC–
PCNA–DNA complex. RFC-s subunits are shown in gold, green, cyan, violet and blue. 
The RFC-s indicated in gold corresponds to the large RFC (RFC-l) subunit. The three 
PCNA protomers are shown in blue, yellow and red (best visible in the lower part of the 
bottom two structures). An 11-nucleotide DNA duplex is fitted into the internal chamber 
of the clamp loader and encircled by PCNA. Adapted with permission from REF. 4 © 
National Academy of Sciences, USA.
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